## Mathematics



## Teaching Calculations at Evelyn Street Primary Academy

This document sets out the expectations for each year group in terms of calculations strategies which will be taught, explored and applied to a range of contexts.

## Concrete, Pictorial, Abstract

The children's understanding of these calculation strategies will be underpinned by a secure understanding of place value. At Evelyn Street Primary Academy we teach through a CPA (concrete, pictorial, abstract) approach. Understanding in all areas of maths will be developed by children using concrete resources and interpreting and using pictorial representations before moving onto solve abstract calculations. There are a range of place value and counting resources available for the children to use in each classroom. The CPA process/approach will be clearly exemplified on maths working walls for the current maths focus.

## Checking Children's Understanding

Teachers will be aware, not only of their year group's expectations but those the children have learnt previously. It is important that teachers check the children's understanding of the previous teaching before moving on, in order for the children to really master the mathematics curriculum. Where individuals or groups of children do not show a secure understanding of what has been taught previously, it will be necessary to track back, either through whole-class teaching or individual or group intervention (boost sessions).

## Mental Strategies

This document also contains essential information about the mental strategies that children will be taught. It is of vital importance that these are given high-priority during maths teaching and practised regularly, so that children have the skills which are required across all areas of maths.

EYFS nursery and
reception

## Counting and adding more

Children add one more person or object to a group to find one more.


The parts are 2 and 4. The whole is 6.

## Counting and adding more

Children add one more cube or counter to a group to represent one more.


One more than 4 is 5.

## Understanding part-part-whole relationship

Children draw to represent the parts and understand the relationship with the whole.


The parts are 1 and 5. The whole is 6 .

## Counting and adding more

Use a number line to understand how to link counting on with finding one more.


One more than 6 is 7
7 is one more than 6.
Learn to link counting on with adding more than one.


Understanding part-part-whole relationship
Use a part-whole model to represent the numbers.


$$
6+4=10
$$

$6+4=10$

|  | Knowing and finding number bonds within 10 <br> Break apart a group and put back together to find and form number bonds. $3+4=7$ $6=2+4$ | Knowing and finding number bonds within 10 <br> Use five and ten frames to represent key number bonds. $5=4+1$ $10=7+3$ | Knowing and finding number bonds within 10 <br> Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. $\begin{aligned} & 4+0=4 \\ & 3+1=4 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Adding by counting on Children use knowledge of counting to 20 to find a total by counting on using people or objects. | Adding by counting on Children use counters to support and represent their counting on strategy. |  |


|  | Mental strategies | Written methods | Vocabulary | Models, images and resources |
| :---: | :---: | :---: | :---: | :---: |
| Year 1 | The children should be taught to use the following mental strategies, and to use jottings to support their methods: <br> - Counting on in ones <br> - Re-ordering the numbers when adding e.g. put the larger number first <br> - Counting on and back in ones, twos and tens <br> - Looking for pairs of numbers that equal 10 <br> - Partitioning small numbers to bridge tens e.g. $8+3=8+2+1$ <br> - Partitioning using known facts e.g. double and adjust 5+6 = 5+5+1 <br> - Adding 9 to a number by adding 10 and then subtracting 1 <br> - Recalling number bonds to 10 and 20 in several different forms (e.g. 9+7 = 16, 16-7=9 and $7=16-9$ ) | Solve simple one-step problems that involve addition using concrete objects and pictorial representations and missing number problems. Explain methods \& reasoning <br> Use the 100 square to add 10 to a single digit number Record addition by: <br> - showing jumps on prepared number lines <br> - recording number sentences e.g. $6+5=11$ is $6+4+1=11$ <br> Read, write and interpret mathematical statements involving addition (+) and equals (=) signs <br> Use tens frames and number lines to support understanding of bridging to 10 | add <br> total <br> more <br> count <br> number bond <br> number story <br> inverse <br> part whole | 100 square number lines number tracks objects of various size and shape bead strings bead bar tens frames Numicon Dienes (base 10) part whole rekenrek |
|  |  | $4+3=7$ |  |  |


| Year 2 | The children should be taught to use the following mental strategies, and to use jottings to support their methods: <br> - Reordering numbers when adding <br> - Count on in tens or ones <br> - Using knowledge of pairs making 10 and place value <br> - Compensating: add 9, 19, 11 or 21 <br> - Compensating: doubling and adjusting. <br> - Partitioning: Bridge through 10 when adding. <br> - Partition and combine multiples of tens and ones. <br> - Looking for number bonds/known facts when adding 3 one-digit numbers | Count or add in multiples of 1 <br> Add by using partitioning of <br> Solve simple problems with ad pictorial representations, invo <br> Recognise and use the inverse subtraction to check calculat Check by adding in different $+5$ <br> Record addition in columns to efficient written methods. | using 100 square or number line <br> $\mathrm{O}+\mathrm{TO}$ <br> dition using concrete objects and lving numbers and measures <br> relationship between addition and ons and missing number problems. order e.g. $5+2+1=1+5+2=1+2$ <br> support place value and prepare for | add <br> sum <br> more than <br> total <br> altogether <br> plus <br> partition into tens <br> and ones <br> regroup <br> inverse <br> commutative | jottings <br> 100 square <br> number <br> lines <br> number <br> tracks <br> practical <br> equipment <br> bead <br> strings <br> arrow cards <br> dienes <br> tens <br> frames <br> bar model <br> part part <br> whole <br> place value <br> counters |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $3=16$ |  |  |
| Year 3 | The children should be taught to use the following mental strategies, and to use jottings to support their methods, where appropriate: <br> - Counting on in hundreds, tens and ones to find the total. | Add numbers with up to three digits, using efficient written methods of columnar addition. Use understanding of place value and partitioning |  | partition <br> hundreds, tens, ones <br> digit <br> number line <br> regroup <br> inverse <br> adjust | jottings number lines arrow card 100 square dienes apparatus |





|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Year 6 | The children should be taught to use the following mental strategies, and to use jottings to support their methods, where appropriate. <br> - Consolidate all strategies from previous years <br> - Partition, adding the most significant digit first <br> - Compensating: adding a whole number, multiple of 10 or double and adjust. <br> - Use knowledge of place value and related calculations e.g. $680+430,6.8+4.3,0.68+$ 0.43 can all be worked out using the related calculation $68+43$. <br> Calculate mentally with increasingly large numbers and more complex calculations. Addition facts for multiples of 10 to 1000 and decimal numbers with one decimal place, e.g. $650+\square=930, \square+1.4=2.5$ | Practise addition for larger numbers, using the efficient written methods of columnar addition. | addend <br> sum <br> adjust <br> compensate |  |


| SUBTRACTION |  |  |  |
| :---: | :---: | :---: | :---: |
| EYFS | Counting back and taking away Children arrange objects and remove to find how many are left. <br> 1 less than 6 is 5 . <br> 6 subtract 1 is 5 . | Counting back and taking away Children draw and cross out or use counters to represent objects from a problem. $\mathrm{q}-\square=\square$ <br> There are $\square$ children left. | Counting back and taking away Children count back to take away and use a number line or number track to support the method. $9-3=6$ |
|  | Finding a missing part, given a whole and a part <br> Children separate a whole into parts and understand how one part can be found by subtraction. $8-5=?$ |  |  |
|  | Subtraction within 10 <br> Understand when and how to subtract 1s efficiently. <br> Use a bead string to subtract 1s efficiently. $5-3=2$ | Subtraction within 10 <br> Understand when and how to subtract 1s efficiently. $5-3=2$ | Subtraction within 10 <br> Understand how to use knowledge of bonds within 10 to subtract efficiently. $5-3=2$ |


|  | Mental strategies | Written methods | Vocabulary | Models, Images and resources |
| :---: | :---: | :---: | :---: | :---: |
| Year 1 | The children should be taught to use the following mental strategies, and to use jottings to support their methods: <br> - Count back in ones <br> - Find one less than a number <br> - Find 10 less than a multiple of 10 <br> - Take away a small number by counting back <br> - Find a small difference by counting on (using equipment) <br> - Begin to bridge through 10 when subtracting a one-digit number <br> - Start to recall subtraction facts up to and within 10 and 20 and understand subtracting 0. | Count back orally or use a number line to find the difference by counting on in ones $9-4=5 \text { ( counting back) }$ <br> and when secure <br> Solve simple problems and missing number problems involving subtraction using practical equipment, concrete objects and pictorial representations $\text { ) ) ) } \lambda \lambda \lambda \lambda \lambda$ <br> Explain methods \& reasoning <br> Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs | count back count on less than difference take away subtract number bond tens and ones left over fewer | 100 square number lines number tracks practical equipment bead strings tens frames Numicon bar model |
|  |  | $7-3=4$ <br> -0000-000- |  |  |


| Year 2 | - Counting back in tens and ones. <br> - Subtract mentally a 'near multiple of 10' by subtracting and adjusting <br> - Subtract a small number by counting back. <br> - Find a small difference by counting up from the smaller to the larger number (on a number line) <br> - Recalling subtraction facts for numbers to 20 and using these to derive the related facts up to 100. <br> - Subtract by partitioning the second number and subtracting tens then ones. <br> - Use patterns of similar calculations. | Understand when it is sensible to count back (take away) and when to count on (find the difference) <br> Use number lines to bridge through multiple of 10 <br> Subtract by using partitioning of TU - TU <br> Solve simple problems involving numbers, quantities and measures using concrete objects and pictorial representations, <br> Recognise and use the inverse relationship between addition and subtraction to check calculations. <br> Record subtraction in columns to support understanding of place value and prepare for efficient written methods. | count back count on subtract take away less than minus decrease difference inverse rename hundreds, tens, ones | 100 square number lines number tracks practical equipment bead strings arrow cards dienes tens frames part part whole place value counters |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 28 <br>  <br> $65-28=37$ |  |  |
| Year 3 | Use number bonds to 20 and links to bonds of multiples of 10 to 100 , complements to 100 e.g. $100-55=45$ <br> Practise solving varied subtraction questions mentally with two-digit numbers, the answers could exceed 100. <br> Subtract numbers mentally, including: | Solve problems, including missing number problems, using number facts, place value, and more complex subtraction <br> Subtract with up to three digits, using efficient written columnar methods, understanding of place value and partitioning | jottings subtraction partition thousands, hundreds, tens, ones digit number line count back count on | number line arrow card 100 square dienes bead bar place value diagrams place value counters bar model |


|  | a three-digit number and ones <br> a three-digit number and tens a three-digit number and hundreds groups of small numbers, e.g. 9-3-2 a two-digit number from a multiple of 10, eg. 50 - $38,90-27,68-35$ | $\begin{aligned} & \text { Count on or fi } \\ & \text { close togethe } \\ & \frac{\text { Expanded colt }}{83-4=654} \\ & 89-57 \end{aligned}$ <br> Columnar sub $\begin{array}{r} 8 \\ -\quad 6 \\ \hline 2 \\ \hline \end{array}$ <br> Estimate ans | $\begin{aligned} & 8-4=4 \text { Use } \\ & 50+4=654 \end{aligned}$ <br> ind the differ <br> traction <br> 6 <br> 4 <br> 2 <br> wers calculati | ion <br> 32 <br> 6 <br> 8 <br> 8 <br> s and |  | o subt <br> the lar <br> numb | find the difference inverse regroup subtrahend minuend difference |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $=262$ |  |  |  |  |


| Year 4 | - Counting back in hundreds, tens and ones. <br> - Counting on as a mental strategy for subtraction when the numbers are close together (e.g. 131129), and for finding a small difference. <br> - Compensating: subtract mentally a near multiple of 10 then adjust. <br> - Bridging through a multiple of 10 <br> - Use knowledge of number facts and place value to subtract pairs of numbers <br> - Subtract a two-digit number by partitioning it then subtracting tens and ones. <br> - Use patterns of similar calculations <br> - Use the relationship between addition and subtraction | Subtract numbers with up to 4 digits using efficient written column method with increasingly large numbers to aid fluency. <br> Estimate and use inverse operations to check answers <br> Solve subtraction of two-step problems in contexts, deciding which operations and methods to use and why. <br> Compact columnar subtraction with decomposition $\begin{array}{r} 614 \\ 7 y^{14} \\ 27 \\ \hline 47 \\ \hline \end{array}$ | jottings <br> reduce <br> difference <br> deduct <br> partition <br> place value <br> thousands, <br> hundreds, <br> tens, ones <br> digit <br> inverse <br> exchange <br> regroup <br> subtrahend <br> minuend <br> difference | number lines, dienes bar model place value counters |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $4,357-2,735=1,622$Thousands Hundreds Tens Ones <br>     |  |  |
| Year 5 | - Subtract numbers with increasingly large numbers to aid fluency e.g. 12 462-2 300= 10162 <br> - Use rounding to check answers and determine, levels of accuracy | Subtract whole numbers with up to 7 digits using efficient column written methods including decomposition e.g. 754-86 $\begin{array}{r} 6414 \\ 754 \\ -86 \\ \hline 668 \\ \hline \end{array}$ | decimal point <br> integer <br> inverse <br> positive, <br> negative <br> numbers <br> subtrahend | number lines, <br> bar model <br> place value <br> counters <br> place value grid |



- Consolidate all mental strategies from previous year groups.
- Use negative numbers in context and calculate intervals across zero.
- Counting back in powers of tens, including tenths, hundredths and thousandths.
- Use knowledge of place value and related calculations
- Subtract a power of ten, or a whole number and adjust.
- Find the difference by counting up through the nearest multiple of $0,1,10$, 100 or 1,000 then adjust.
- Continue to use the relationship between addition and subtraction.

Practise subtraction for numbers up to $10,000,000$, using efficient written methods
integer positive, negative numbers subtrahend minuend difference

## MULTIPLICATION








## DIVISION

| EYFS nursery and reception | Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. Repres equal | Grouping <br> Represent a whole and work out how many equal groups. <br> There are 10 in total. <br> There are 5 in each group. <br> There are 2 groups. <br> Sharing <br> Share a set of objects into equal parts and work out how many are in each part. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Mental strategies | Written methods | Vocabulary | Models, Images and resources |
| Year 1 | - Share objects into equal groups and count how many in each group and consider 'left over'. <br> - Count on from and back to zero in ones, twos, fives or tens <br> - Make connections between arrays, number patterns, and counting in twos, fives and tens. <br> - Link to halving <br> - Introduce the symbol for division $\div$ <br> - Through grouping and sharing small quantities, children will begin to understand division and finding simple fractions of objects, numbers and quantities | Practical problem solving activities involving equal sets or groups. Begin to understand division through grouping and sharing and halving small quantities <br> Can you cut the cake in half? <br> How many pieces are there? <br> How many cakes are there in the box? Take half of them out. <br> Solve simple problems using concrete objects, pictorial representations and find simple fractions of objects, numbers and quantities. with the support of the teacher | share <br> sharing <br> grouping <br> equal groups <br> left over <br> half <br> halving <br> each | practical equipment arrays |

- Become fluent in recall and use of multiplication and division facts for the 2,5 and 10 multiplication tables.
- Halve any multiple of 10 up to 100 , e.g. halve 90
- Find half of even numbers to 40
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
- Identify odd and even numbers to 100
- Links to arrays
- Using knowledge that halving is in the inverse of doubling and the same as dividing by 2.
- Use known facts and place value to divide.

Calculate mathematical statements and write using division ( $\div$ ) and equals (=) signs
Solve problems using materials, arrays, repeated subtraction and division facts, including problems in contexts.

```
101010
10101016
161610
```

Understand as sharing equally
6 sweets are shared equally between 2 people. How many sweets does each one get?


Understand as grouping (repeated subtraction).

## There are 15 apples in a box.

How many bags of 5 apples can be filled?

## How many groups of 5 can you make from 15?



## Model repeated subtraction using a number line

$24 \div 4=6$


Begin to use other $x$ tables and division facts to perform written calculation.
Relate to fractions and measures eg. $40 \div 2=20,20$ is a half of 40 Check calculations using the inverse relationship between $\times$ and $\div$
divide divisible share equally, one each, two each...,
grouping equal groups, how many lots of, groups
of...
array
odd
even
repeated subtraction

- Halve any multiple of 10 up to 200, e.g. halve 170
- Find unit fractions of numbers and quantities involving halves, thirds, quarters, fifths and tenths
- Recall and use division facts for the 3, 4,11 and $8 \times$ tables
- Counting in $2 s, 5 s, 10 s, 3 s, 4 s$ and $8 s$
- Use known facts and place value to divide be $2,3,4,5,8$ or 10 .
- Using knowledge that halving is in the inverse of doubling and the same as dividing by 2 . Use this to link to $\div 2, \div 4$ and $\div 8$.
- Using known facts/partition in different ways to become more efficient in mental calculations: e.g. 39 $\div 3$ by taking 3 lots of 10 away mentally then 3 lots of 3 to get 13 as the answer.
- Use the relationship between multiplication and division.
- Scaling down using known facts.
- Calculate and write mathematical statements for division using related $x$ tables facts, including for $\mathrm{TO} \div \mathrm{O}$ mentally
- Develop efficient mental methods using facts e. $6 \div 3=2$ and $2=6 \div 3$ to derive related facts $60 \div 3=20$ and 20 $=60 \div 3$
- Identify remainders when dividing by 2, 5 or 10

Develop reliable written methods for $\mathrm{TO} \div \mathrm{O}$ progressing to efficient written

Use practical methods and jottings, including remainders
Sharing: If $£ 20$ is shared between 4 people, how much would each get? or

Grouping: There are 20 children and they sit in tables of 4. How many tables will we need?

Repeated subtraction using a number line

$$
24 \div 4=6
$$



Written methods and jottings


- Recall division facts for $x$ tables up to $12 \times 12$ use place value, known and derived facts to aid fluency.
- Counting in $6 \mathrm{~s}, 7 \mathrm{~s}, 9 \mathrm{~s}, 25 \mathrm{~s}$ and 1000 s .
- Practise and extend mental methods to three-digit numbers to derive facts e.g. $200 \times 3=600$ into $600 \div 3=200$
- Divide numbers to 1000 by 10 and then 100 (whole-number answers), e.g. $120 \div$ $10,600 \div 100,850 \div 10$
- Use understanding of place value and what happens to the value of each digit when it is divided by 10,100 or 1,000 .
- Divide larger numbers by 4 or 8 , by halving and halving again ...
- Identify remainders when dividing by 1 to 12
- Find halves of larger numbers
- Find unit and simple non-unit fractions of numbers and quantities eg $3 / 8$ of 24
- Use known facts and place value to solve calculations and to become more efficient in mental calculations e.g. $92 \div$ 4 by taking away 20 lots of 4 , to be left with 12 , then taking away $4 \times 3$ to get the answer of 23 .
- Use factor pairs to divide
- Scaling down using known facts
- Use the relationship between multiplication and division

Develop fluency in efficient strategies for short division

Introduce dividing using subtracting 10 lots of divisor and asking 'how many more left over?'
$52 \div 4$
I know that 10 lots of 4 are 40, there will be 12 left over which is another 3 lots of 4 so there are 13 lots of 4 in 52

Efficient strategies and representations


$$
844 \div 4=211
$$


inverse divide quotient divisor dividend remainder short division


- Counting in steps of powers of 10 .
- Recall division facts for all the times tables, up to $12 \times 12$
- Use understanding of place value and what happens to the value of each digit when it is divided by 10,100 or 1,000
- Use known facts and place value to solve calculations.
- Use knowledge of division facts e.g. when carrying out a division to find a remainder. Use factor pairs to divide
- Use the relationship between multiplication and division
- Consolidate all previously taught strategies.
- Divide TO by $O$ number, eg. $68 \div 4$
- Divide two-digit decimals eg. $4.8 \div 6$ and find halves of decimals with ones and tenths, eg. half of 15.2
- Divide multiples of 100 by a multiple of 10 or 100 (whole number answers), e.g. $600 \div$ $20,800 \div 400,2100 \div 300$
- Simplify fractions by cancelling and relating common factors to equivalent fractions.
- Scale up and down using known facts, e.g. given that six oranges cost 24 p, find the cost of four oranges

Divide numbers up to ThHTO by a TO whole number using efficient written method of long division, and interpret remainders as whole numbers, fractions, decimals fractions or by rounding as appropriate for the context

$372 \div 15=24 \mathrm{r} 12$


$$
372 \div 15=24 \frac{4}{5}
$$

