Mathematics

Evelyn Street Primary Academy

Long term plan 23-24

Mathematics - EYFS Reception

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Cardinality \& Counting 1.1 Accurate counting of sets of objects 1-5 NB S1 episodes 9 \& 10 (1:1 correspondence, cardinality) 1.2 Subitising 1-3 NB S1 episodes 1-4 (Introducing 1, 2 and 3) 1.3 Numeral Recognition to 5 Composition 1.1 Conceptual subitising noticing numbers within numbers Comparison 1.1 Compare sets $1-5$ using vocab of more / fewer / most /fewest Shape/Space 1.12 D shapes and their properties Pattern 1.1 Simple AB patterns (complete, copy, make own and spot/correct errors in patterns) A lot of this content should be a recap from Nursery and provide you with baseline assessment data	Cardinality \& Counting 2.1 Accurate counting of sets of objects 1-10, recognising and ordering numerals 1-10 2.2 Subitising 1-5 NB S1 episodes 6 \& 7 (Introducing 4 and 5) Composition 2.1 Applied conceptual subitising NB S1 episode 11 (Stampolines) 2.2 Inverse operations splitting and recombining sets of objects 1-5 including on part whole model NB S1 episode 12 (Whole of me) Comparison 2.1 Compare numbers using vocab of more/less 2.2 Find 1 more using sets of objects on tens frames and on a number track Pattern 2.1 identifying unit of repeat $A B \& A B C$ patterns	Cardinality \& Counting 3.1 Counting backwards $10-1$ \& ordering numbers $10-1$ Composition 3.1 Systematic approach to partitioning sets of objects 1-5 including on part whole model NB S1 episode 14 (Holes) Comparison 3.1 Find 1 less using sets of objects on tens frame and on a number track Measures 3.1 Height Shape/Space 3.1 Spatial vocabulary (in front, behind, in between, on, in, under, first second, third) Pattern 3.1 More complex patterns $\mathrm{ABB}, \mathrm{ABBC}$ 3.2 Generalising pattern and transferring to another format e.g. link pattern of shapes to movements	Composition 4.1 Recall number bonds for numbers 1-5 4.2 Partitioning and recombining sets of objects 6-9 Including on part whole model and tens frame NB S2 episodes 1-5 (Introducing 6-10) Measures 4.1 Length Shape/Space 4.1 Representing spatial relationships as maps Spatial vocabulary (forwards, backwards, up, down, across) Pattern (alongside Comparison) 4.1 Numerical Patterns staircase patterns linked to finding 1 more/ 1 less using a mental numberline (Comparison) NB S2 episodes 6 \& 7 (Just add one \& ten green bottles)	Cardinality \& Counting 5.1 Counting beyond 10 noticing pattern in ones Composition 5.1 Systematic approach to splitting and recombining 10 including on tens frame and part whole model 5.2 recall some number bonds for 10 NB S2 Episode 13 (Blast Off!) Measures 5.1 Mass Shape/Space 5.1 3D shapes properties of shapes Patterns 5.1 Numerical patterns odds \& evens NB S2 episode 11 (Odds \& Evens)	Cardinality \& Counting 6.1 Counting beyond 20 noticing pattern in tens Measures 6.1 Capacity 6.2 Time - sequence of events Shape/Space 6.1 Relationships between shapes Pattern (alongside Composition \& Comparison) 6.1 Symmetry/reflections - link to doubles 6.2 Share fairly (comparison), Use part whole model to partition numbers where both parts are the same (Composition) and Look at halving as inverse of doubles (Pattern) NB S2 episode 9 (Double Trouble) Possible extension Sharing between more than two (comparison) NB S2 episode 8 (Counting Sheep) Splitting into more than 2 parts on a part whole model (composition) NB S2 episode 10 (The three threes)

Term	3/4 overview			
$\begin{aligned} & \text { 菛 } \\ & \frac{\pi}{d} \end{aligned}$	Number: Place Value	Number: Addition and Subtraction		Number: Multiplication and Division
	- Language of 25,50, 75, 100 must be needs to be a fluent spoken language pattern - Yr 3= Multiplication tables - Divide 2, 5, 10 and recite in 4, 8, count 3, 11 - Yr 4 = Multiplication tables - Divide $2,4,5,10,11$ and multiply 3,8 and recite $6,7,9,12$			
$\begin{aligned} & \text { 咢 } \\ & \text { in } \end{aligned}$	Number: Multiplication and Division	Measurement: Length and Perimeter and Area (Yr 4 only)	Number: Fractions	Measures: Mass and Capacity (Yr 3) Decimals (Yr 4)
	Yr 3= Multiplication tables - Divide 2, 5, 10 and multiply 4, 8, recite 3, 11 Yr $4=$ Multiplication tables - Divide 2, 3, 4, 5, 8, 10, 11 and multiply $6,7,9,12$			
	Number: Decimals Measure: Money	Measurement: Time	Statistics	Geometry: Properties of shape and Position and direction (Yr 4 only)
	Yr 3= Multiplication tables - Divide 2, 4, 5, 10 and multiply 8, 3, 11 Yr $4=$ Multiplication tables - Divide all to 12×12			

