Nursery - Number and Number Patterns

Maths progression through EYFS Nursery

 attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.
 oonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts
 quantity - Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally

Nursery \& Reception Maths Curriculum - V10 - September 2023

Cardinality and Counting (Mostly incorporated	ELG statement Have a deep understanding of number to 10)	
Accurately count a set of up to 10 objects and say how many there are	- Recites 1-10 in a stable counting order - Uses 1:1 correspondence to accurately count a set of up to 5 objects - Understands last number said represents whole set up to 5 - Counts out up to 5 objects from a larger group - Uses 1:1 correspondence to accurately count a set of up to 10 objects - Understands last number said represents whole set up to 10 - Counts out up to 10 objects from a larger group	
Subitise (recognise quantities without counting) up to 5	- Can subitise regular arrangements of the quantities 1-3 e.g. a dice face, fingers or structured manipulatives like numicon or counters on a five frame - Can recognise small amounts (up to three) when they are not in the 'regular' arrangement, e.g. small handfuls of objects - Can subitise regular arrangements of quantities 1-5 e.g. a dice face, fingers or structured manipulatives like numicon or counters on a tens frame - Can subitise small amounts (up to five) when they are not in the 'regular' arrangement, e.g. small handfuls of objects.	- Applies subitising when showing/getting a set or playing a game? (e.g. instantly picks up 5 pebbles on request without counting)
Read and match number symbols to sets of objects	- Can say the number word when shown numerals 1-5 - Counts out and matches sets of objects to numerals 1-5 - Can put the numeral cards 1-5 in order - Can say the number word when shown numerals 6-10 - Counts out and matches sets of objects to numerals 6-10 - Can put the numeral cards 1-10 in order	- Begin to reason and problem solve within the range 1-10
Recognise when amounts have been rearranged and generalise that, if nothing has been added or taken away, then the amount is the same.	- Knows that it doesn't matter which item you count first the count will be the same - Arranges a given set of objects in different ways and still knows how many there are without recounting - Corrects a puppet that thinks there are more objects when items are more spread out	- Begin to reason and problem solve within the range 1-10
Can count forwards and backwards from any number to 10	- Can count backwards from 10-0 - Can count forwards to 10 from any start number - Can count forwards from any number and stop at a given number e.g. count from 2-7 - Can count backwards to zero from any number - Can count backwards starting from any number to 10 and stop at a given number e.g. count backwards from 8 to 3	\bullet
Verbally count beyond 20 , recognising the pattern of the counting system;	- Begins to count a few numbers past 10 - Can join in with whole class counting in highly patterned parts e.g. 22, 23, 24 - Counts to 20 accurately without missing out numbers	- Knows the order of the tens to confidently count beyond 29 including over each tens barrier e.g. 69, 70, 71

Composition (Mostly incorporated within ELG statement Have a deep understanding of number to 10, including the composition of each number)		
Notice and subitise small groups within a larger set of objects (conceptual subitising)	- Use subitising to notice small groups (1-3) within a larger group of objects - Use subitising to notice small groups (up to 5) within a larger group of objects	- Begins to combine small groups to a total and articulates this e.g. I know there are 4 because I can see a 2 and a 2

Nursery \& Reception Maths Curriculum - V10 - September 2023

	- Applies subitising (up to 5) to create groups within groups exploring different ways each number to 5 can look and describes what they see e.g. With my 5 I have made a 3 and a 2	- Be more systematic in exploring all the groups within groups for a given number so they know they have found all the possible representations
In practical activities, partition and recombine numbers up to 5 and then 10 into different pairs of numbers	- Investigates inverse operations through play - taking things away and putting them back - Physically separating a group of up to 10 objects (whole) into two parts (part- part-whole model) - Constructing a group of up to 10 (whole) from two kinds of things (parts) - Explore numbers 6-10 on apparatus that allows children to relate them back to 5 e.g. on tens frames 7 is a whole row of 5 and 2 more, on bead strings 7 is 5 white beads and 2 red ones	- Makes generalisations e.g. each part can never be bigger than the whole
Automatically recall (without reference to rhymes, counting or other aides) number bonds up to 5 (including subtraction facts)	- Use a systematic approach to find all the ways to make all the numbers up to 5 and begin to know some of these facts - In a play-based context, for numbers up to 5, predict all the pairs that can be made when you partition the number (number bonds)	- Makes generalisations and easily notices and uses patterns like always starting with the number and zero and then 1 less than the number and 1 or realising that every pair can be switched around to make a new pair - Reason and problem solve using known facts
Automatically recall (without reference to rhymes, counting or other aides) some number bonds to 10 , including double facts.	- Use a systematic approach to find all the ways to make 10 - In a play-based context with 10 objects, predict a few of the pairs that can be made when you partition ten (number bonds) - Link composition work to work in pattern to explore how some numbers can be partitioned into equal parts and learn these double facts	- Uses generalisations from knowing number bonds 1-5 to explain how to find pairs that make $6-9$ more efficiently e.g. knows to start with 0 and the number being partitioned, then put the 0 up by 1 and the other number down by 1
Pattern		
Recognise, continue, copy and create repeating patterns	- Can continue an AB pattern - Can copy an AB pattern - Can make their own $A B$ patterns - Can continue an $A B C, A B B, A A B B, A B B C$ pattern - Can copy an $A B C, A B B, A A B B, A B B C$ pattern - Can make their own $A B C, A B B, A A B B, A B B C$ patterns	-
Identify the unit of repeat in a repeating pattern	- Identify the smallest part of a pattern and use this to 'name' a pattern - Split a pattern into these parts and use this to be able to spot errors in patterns - Use this knowledge to continue a pattern from the midpoint of a unit of repeat - Use this knowledge to correct a pattern without having to start all over again	- Make circular patterns - investigating whether their pattern will fit - Make square border patterns investigating whether their pattern will fit
Symbolise the unit structure of a repeating pattern and generalise the structure to another context	- Use own mark making ideas to record a pattern e.g. record a colour pattern with tally marks in different colours - Use objects to record a pattern e.g. picture cards to represent movements in a dance pattern - Make links between different contexts e.g. link the 2 ideas above by using a red tally to be a spin and a green tally to be a clap for example create the same pattern in a different context	- Apply ability to symbolise patterns to reason about whether a given pattern will fit around a circle or a square border
Spot and create staircase patterns	- Notice growing patterns in books e.g. There was an old lady who swallowed a fly and order images as a staircase pattern - Make staircase patterns in ones with concrete apparatus such as Cuisenaire rods or numicon - Make link to 1 more and 1 less on number track and develop mental number line until they can say 1 more and 1 less for any number to 10	- Investigate other staircase patterns, can they work out what is happening? Can they record the pattern and link it to the number track?

Nursery \& Reception Maths Curriculum - V10 - September 2023

Explore and represent patterns within numbers up to 10 , including evens and odds.	- Sort odd and even representations of numbers e.g. numicon, numberblocks or counters on tens frames - Understand that even numbers can be represented exactly by sets of 2 and odd numbers have an odd one out - Use this to prove with practical apparatus whether a number is odd or even in range $0-10$ -	- Link odds and evens back to step patterns in twos and predict an odd or even number beyond 10
Explore and represent patterns within numbers up to 10 , including double facts and how quantities can be distributed equally.	- Make reflective patterns e.g. using paint and fold in half then add extra pattern components on both sides or using graphics package with reflection enabled - Reflect sets of objects and record how many there are in total - Link sharing equally to known facts from composition work e.g. 2 composed from 1 and 1,4 (2 and 2), 10 (5 and 5) - Moderation Comment and Date.	- Systematically generate doubles and halves facts to 10 and learn them all off by heart

'First 4 Maths' - Mathematics					
Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2

